Donor Stem Cells Improve Cardiac Function

After a heart attack, monkeys given induced pluripotent stem cell–derived cardiomyocytes show more regeneration in the organ, but with risks.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, SHAWN ALLENCardiac muscle cells derived from induced pluripotent stem cells (iPSCs) and injected into monkeys helped the animals’ hearts recover from a heart attack, according to a study published yesterday (October 10) in Nature. The iPSCs came from donor monkeys who were immune-matched.

Although cardiac function improved in the monkeys, they developed arrhythmia, “typically within the first four weeks,” study coauthor Yuji Shiba of Shinshu University in Japan told ResearchGate. “However, this post-transplant arrhythmia seems to be transient and non-lethal. All five recipients of iPSC-[cardiomyocytes] survived without any abnormal behavior for 12 weeks, even during the arrhythmia. So I think we can manage this side effect in clinic.”

In 2014, Charles Murry at the University of Washington and colleagues observed cardiac regeneration after they injected monkey hearts with cardiomyocytes derived from human embryonic stem cells. The researchers also observed non-fatal arrhythmias after the treatment.

Shiba’s team took fibroblasts from the donor monkeys, converted them to iPSCs, differentiated them into cardiomyocytes, and then injected the cells into the hearts ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH