Drosophila’s New Genes

An analysis of the transcriptomes of several fruit fly strains reveals dozens of possible de novo genes in each.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, MUHAMMAD MAHDI KARIMIn the last few years, scientists have come to realize that genes really can arise from formerly noncoding regions of the genome. Indeed, comparing the genomes of related species has even suggested that such de novo gene formation may be quite common. Today, the first-ever within-population search for novel genes supports this idea. Publishing in Science, researchers at the University of California, Davis, present a total of 142 transcripts that are expressed in some or all six Drosophila melanogaster strains they examined, but that corresponded to intergenic sequences of the D. melanogaster reference genome.

“Until recently, de novo origin of genes was considered to be so unlikely as to be impossible,” comparative genomicist Aoife McLysaght of the Smurfit Institute of Genetics at Trinity College in Dublin, Ireland, who was not involved in the study, told The Scientist in an e-mail. “[T]his population level analysis is important because it gives a new insight into the very early stages of the origin and establishment of genes de novo.”

“To show [the formation of de novo genes] at the population genetics level is really a nice story,” agreed evolutionary biologist Diethard Tautz of the Max Planck Institute for Evolutionary Biology in Plön, Germany, who also did not participate in the research. “It shows the power of generating from nothing, so to speak.”

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit