Early Training Forestalls Motor, Memory Difficulties in Mouse Model of Rett Syndrome

Manipulating the activity of neurons active during training had similar effects on the mice’s behavior.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, WHITEHOUNE

Motor and memory training early in life postpones the onset of difficulties in those areas in a mouse model of Rett syndrome, according to a study published today in Nature. Stimulating neurons involved in those skills appears to mimic the effects of training.

Mutations in the gene MECP2 cause Rett syndrome, which often overlaps with autism and almost exclusively affects girls. Many children with Rett syndrome develop typically until toddlerhood and then suddenly lose the ability to speak, crawl or walk. Other traits, including breathing problems, intellectual disability, seizures and changes in social behavior, can also emerge.

Gene therapy to replenish missing MECP2 protein holds the potential restore some abilities, but too much MECP2 protein can cause challenges similar to Rett syndrome, and a successful treatment may be more than a decade away.

In the meantime, intensive early therapy may help to delay the condition’s progress ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Laura Dattaro

    This person does not yet have a bio.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad
Takara Bio

Takara Bio USA Holdings, Inc. announces the acquisition of Curio Bioscience, adding spatial biology to its broad portfolio of single-cell omics solutions

Sapio Sciences

Sapio Sciences Announces Enhanced Capabilities for Chemistry, Immunogenicity, GMP and Molecular Biology

Biotium Logo

Biotium Unveils the Most Sensitive Stains for DNA or RNA with New EMBER™ Ultra Agarose Gel Kits