Electrical Stimulation Steers Neural Stem Cells

Current can guide implanted cells away from rats’ noses toward a region deep in their brains.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Human neural stem cells (green) guided by electrical stimulation migrated to and colonized the subventricular zone of rats’ brains. This image was taken three weeks after stimulation.JUNFENG FENG/UC DAVIS, SACRAMENTO AND REN JI HOSPITAL, SHANGHAINeural stem cells normally go with the flow of chemical guides. But with a little electrical stimulation they can be coaxed to go the other way, a new study shows.

When scientists applied electric current to human neural stem cells injected into rats’ brains, the cells moved toward the animals’ subventricular zone and lateral ventricle, instead of toward their olfactory bulb, the default destination. The result, published June 29 in Stem Cell Reports, suggests that electrical stimulation could one day be used to guide neural stem cells to damaged sites in the brain.

“This is the first study I’ve seen where stimulation is done with electrodes in the brain and has been convincing about changing the natural flow of cells so they move in the opposite direction,” stem cell expert Alan Trounson of the Hudson Institute in Australia tells The Scientist. “The technique has strong possibilities for applications because the team has shown you can ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley Yeager

    Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours