Embryos Right Genetic Wrongs?

New evidence supports an old idea that embryos with genetic abnormalities can somehow fix themselves early in development.

Written byAmy Maxmen
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

THE CENTER FOR PREIMPLANTATION GENETICS, LABCORP

Embryos whose cells acquire too many or too few chromosomes have a diminished chance of surviving to full term. If they do survive, the abnormal count could result in Down syndrome or another chromosomal disorder. But some of these defective embryos can actually fix their genetic mistakes, according to a study reported last week at the European Society of Human Reproduction and Embryology meeting in Stockholm, Sweden.

The idea was originally proposed in the 1990s, but with little evidence and a lot of skepticism, had quickly fallen by the wayside. The new study garners support for this controversial concept that, if true, is certain to impact patients and doctors involved in the infertility treatment, in vitro fertilization (IVF).

"I think this is an important phenomenon ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH