Emily Derbyshire Looks for Malaria’s Vulnerabilities

The Duke University professor studies the parasite to find a way to thwart infection before it takes hold.

| 3 min read
Emily Derbyshire scientist to watch

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © Natalia Weedy Photography

It’s safe to say that most chemistry majors don’t envision becoming experts in dissecting mosquito throats, but that’s the position Emily Derbyshire found herself in when her postdoc project at Harvard Medical School took an unexpected turn. Derbyshire originally planned to study the biochemistry of malaria infection—research that was in line with her experience as an undergrad and graduate student. But by the time she started working in the lab of chemical biologist Jon Clardy, he had won a grant for a more biologically-oriented malaria study, and Derbyshire agreed to change course. “She said that [the project] would be great to work on, and she did a fabulous job,” he recalls.

Derbyshire, now a chemical biologist at Duke University, grew up in upstate New York and was the first person in her family to graduate from university, at Trinity College in Connecticut. Although she’d been ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Shawna Williams

    Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor's degree in biochemistry from Colorado College and a graduate certificate and science communication from the University of California, Santa Cruz.

Published In

March 2019

Going Under

Dissecting the effects of anesthetics

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio