Emily Derbyshire Looks for Malaria’s Vulnerabilities

The Duke University professor studies the parasite to find a way to thwart infection before it takes hold.

Written byShawna Williams
| 3 min read
Emily Derbyshire scientist to watch

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © Natalia Weedy Photography

It’s safe to say that most chemistry majors don’t envision becoming experts in dissecting mosquito throats, but that’s the position Emily Derbyshire found herself in when her postdoc project at Harvard Medical School took an unexpected turn. Derbyshire originally planned to study the biochemistry of malaria infection—research that was in line with her experience as an undergrad and graduate student. But by the time she started working in the lab of chemical biologist Jon Clardy, he had won a grant for a more biologically-oriented malaria study, and Derbyshire agreed to change course. “She said that [the project] would be great to work on, and she did a fabulous job,” he recalls.

Derbyshire, now a chemical biologist at Duke University, grew up in upstate New York and was the first person in her family to graduate from university, at Trinity College in Connecticut. Although she’d been ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor’s degree in biochemistry from Colorado College and a graduate certificate in science communication from the University of California, Santa Cruz. Previously, she worked as a freelance editor and writer, and in the communications offices of several academic research institutions. As news director, Shawna assigned and edited news, opinion, and in-depth feature articles for the website on all aspects of the life sciences. She is based in central Washington State, and is a member of the Northwest Science Writers Association and the National Association of Science Writers.

    View Full Profile

Published In

March 2019

Going Under

Dissecting the effects of anesthetics

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH