Engineered Human Liver Tissue Grows in Mice

Tissue “seeds” made up of three cell types and patterned onto a scaffold develop into complex structures with some organ function, researchers show.

head shot of blond woman wearing glasses
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Microscopic image of a liver tissue seed grown in a mouse (hepatocytes in green, blood vessels in magenta)CHELSEA FORTIN, KELLY STEVENS, UNIVERSITY OF WASHINGTON, SEATTLE, SANGEETA BHATIA, MIT, BOSTONEngineering human livers is a lofty goal. Human liver cells, hepatocytes, are particularly difficult to grow in the laboratory as they lose liver functions quickly in a dish. Now, in a study published today (July 19) in Science Translational Medicine, researchers show that a “seed” of human hepatocytes and supporting cells assembled and patterned within a scaffold can grow out to 50 times its original size when implanted into mice.

These engineered livers, which begin to resemble the natural structure of the organ, offer an approach to study organ development and as a potential strategy for organ engineering.

“What blew my mind is that when we implant these tissues into a mouse with liver injury, the tissue seeds just blossom,” says study author Kelly Stevens, who conducted the experiments as a postdoc in Sangeeta Bhatia’s lab at MIT and now runs her own bioengineering lab at the University of Washington. “Nature takes over and self-assembles a structure that looks like a human liver and has many liver-associated functions.”

“This is a very exciting approach and another demonstration that we can build a basic liver unit using three basic cell types,” says Tammy Chang, an assistant ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky

    Anna Azvolinsky is a freelance science writer based in New York City.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo