Engineered proteins for fighting flu

In a feat of computational biology, researchers design novel proteins capable of neutralizing a key influenza protein.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Model of hemagglutinin stem (gray and yellow) with design protein bound (green).IMAGE COURTESY OF DAVID BAKERComputational biologists designed and produced two novel proteins that strongly bind to a crucial flu protein that enables the virus to enter cells. The new creations, built with the help of more than 200,000 personal computers around the world, may one day serve as effective antiviral therapies, according to a study published today (May 12) in Science.

To design proteins to interact with a desired target, such as a pathogen's protein, researchers can scan extensive libraries of protein structures in search of a few that roughly complement the target molecule, then tweak those structures slightly to produce a tighter fit. Alternatively, they can introduce the pathogen to an animal to coerce its immune system to respond to the target, and then select from the antibodies that are generated.

While the former approach grants researchers control over where and how the designed proteins will bind to the target, they may not bind as strongly to the target. The latter, more "natural" approach, on the other hand, may yield antibodies that have a high affinity for the target molecule, but researchers have little control ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Cristina Luiggi

    This person does not yet have a bio.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome