Model of hemagglutinin stem (gray and yellow) with design protein bound (green).IMAGE COURTESY OF DAVID BAKERComputational biologists designed and produced two novel proteins that strongly bind to a crucial flu protein that enables the virus to enter cells. The new creations, built with the help of more than 200,000 personal computers around the world, may one day serve as effective antiviral therapies, according to a study published today (May 12) in Science.
To design proteins to interact with a desired target, such as a pathogen's protein, researchers can scan extensive libraries of protein structures in search of a few that roughly complement the target molecule, then tweak those structures slightly to produce a tighter fit. Alternatively, they can introduce the pathogen to an animal to coerce its immune system to respond to the target, and then select from the antibodies that are generated.
While the former approach grants researchers control over where and how the designed proteins will bind to the target, they may not bind as strongly to the target. The latter, more "natural" approach, on the other hand, may yield antibodies that have a high affinity for the target molecule, but researchers have little control ...