Enhancing Vaccine Development

Using proteomics methods to inform antigen selection

| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

STOPPING SCOURGES: Colored transmission electron micrographs of Zika virus (blue spheres, left) and Ebola virus (blue filaments and spheres, right)COMPOSITE IMAGE: ISTOCK.COM/LOLON, NIAID, CDC/CYNTHIA GOLDSMITHEbola. Zika. Two foreign words with instant name recognition. As the extremely contagious—and highly deadly—hemorrhagic fever caused by the Ebola virus was ravaging West Africa, the more insidious Zika virus was beginning to infect people in Brazil, causing many infants whose mothers contracted the virus during pregnancy to be born with severe neurological damage. Even though the Ebola epidemic has waned, cases are still being reported. And the onset of summer in the Northern Hemisphere has brought fears of a widespread mosquito-borne Zika epidemic to a fever pitch.

These two epidemics underscore the pressing need for vaccines and other therapeutics to protect against and treat infections with viruses such as Ebola and Zika, as well as a host of other pathogens, some of which are increasingly antibiotic- and drug-resistant. But developing a vaccine against an infectious agent—be it a bacterium, a virus, or a parasite—is not simple: the human immune response itself is complex, and the more genes an infectious agent has and the more readily it mutates, the more challenging it can be for researchers to develop an effective vaccine against the pathogen.

When a disease-causing microorganism enters the human body, it first elicits an innate immune response, followed by the proliferation and differentiation of B cells that produce circulating antibodies directed ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Wudan Yan

    This person does not yet have a bio.

Published In

June 2016

Found in Translation

Some supposedly nonfunctional RNA molecules encode functional peptides

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo