Enzyme Required for Mitochondrial Genome Destruction

Mitochondrial DNA polymerase is necessary for the destruction of paternal mtDNA in fruit fly sperm, scientists show.

Written byAbby Olena, PhD
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Male Drosophila suzukiiWIKIMEDIA, MARTIN COOPERMost animals inherit mitochondria from their mothers. Now, at team of scientists has shown that, in Drosophila, the paternal contribution of mitochondrial DNA (mtDNA) is degraded in the sperm in a process that depends on a subunit of the fruit fly mitochondrial DNA polymerase called Tamas. Their results were published last week (March 16) in Current Biology.

“What’s striking about this study is that this gene, tamas, encodes a subunit of the mitochondrial DNA polymerase, which is the enzyme responsible for replicating the mtDNA,” said Damian Dowling of Monash University in Melbourne, Australia, who did not participate in the work. “It’s a completely new function for this gene that was not known prior to this study.”

The role for Tamas is “surprising,” said Eli Arama of the Weizmann Institute of Science in Rehovot, Israel, who was not involved in the study. “Instead of replicating the DNA, basically it is required to degrade it,” he explained.

Scientists at the University of California, San Francisco (UCSF) found that Tamas associates with mtDNA specifically when the mtDNA is being degraded during Drosophila spermatogenesis. They used ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control