Epigenetic Inheritance in Nematodes

The memory of a temperature spike can persist for as many as 14 generations in C. elegans.

Written byCatherine Offord
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WARM MEMORIES: Researchers engineered C. elegans with multiple copies of a transgene called mCHERRY connected to a promoter for daf-21. When kept at 25 degrees, the worms began to fluoresce red and had progeny that showed similarly elevated expression of the transgenes, despite never having experienced the higher temperature—an effect that persisted for seven generations. When worms were kept at 25 degrees for five generations, the memory of the heatwave lasted longer, with expression levels taking as many as 14 generations to return to normal.THE SCIENTIST STAFF

The paper
A. Klosin et al., “Transgenerational transmission of environmental information in C. elegans,” Science, 356:320-23, 2017.

When genomicist Ben Lehner and his colleagues at the Centre for Genomic Regulation in Barcelona engineered nematode worms to express a fluorescent reporter, they were hoping to learn about the control of gene expression. Fluorescence indicated activation of the promoter for the gene daf-21, which encodes an essential C. elegans heat-shock protein. Glowing worms meant high expression levels; dull worms, low expression. But during the project, the team stumbled across something else.

“Working with this strain, we noticed that if you had individuals that were brighter, their progeny tended to be brighter,” says Lehner. With lab worms that are genetically identical, “this is something you don’t normally see. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

July/August 2017

DNA Erector Sets

New blueprints for the double helix

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH