Epigenetics Armed German E. coli

The 2011 outbreak in Germany that caused some 50 deaths was caused by a strain of E. coli with a complex mechanism of gene regulation.

Written byJef Akst
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Falsely colored E. coliWikimedia, MattosaurusEpigenetics may hold the answer to the virulent strain of E. coli that swept across Germany in May and June 2011, causing thousands of infections and dozens of deaths, according to a study published yesterday (November 8) in Nature Biotechnology.

At the time of the outbreak, researchers around the world worked furiously to sequence the genome of the unknown E. coli strain and identify its virulence secrets. The experience was a testament to the power of current sequencing technologies—allowing researchers to achieve a complete genome sequence within just 3 days—but it also showed its limitations. The genome sequence alone could not explain the fast and furious outbreak.

To get to the bottom of the mystery, Eric Schadt, director of Mount Sinai’s Institute for Genomics and Multiscale Biology, and colleagues at Harvard Medical School took a second look at the genome, this time focusing not on the base pairs themselves, but on their epigenetic marks. “The information content of the genetic code is not limited to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo