Epigenetics of Trained Innate Immunity

Documenting the epigenetic landscape of human innate immune cells reveals pathways essential for training macrophages.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, CHRISTOPH BOCK (MAX PLANCK INSTITUTE FOR INFORMATICS)Genome-wide epigenetic and transcription analyses of monocytes and macrophages have uncovered two crucial pathways driving macrophage training—a recently discovered form of innate immune memory—according to two studies published in Science today (September 25). Together with a third paper documenting the transcriptional diversity of early immune cell progenitors, the studies present the latest results from the ongoing European BLUEPRINT initiative, which aims to decipher the epigenomes of blood cells during health and disease.

“They did a very thorough transcriptomic and epigenomic analysis of these cells and . . . they uncover not just immunologic pathways, which would be expected, but also, interestingly, some metabolic pathways that may be important to the different immunologic phenotypes of these cells,” said Ofer Levy of Boston Children’s Hospital and Harvard Medical School who was not involved in the studies.

Monocytes are part of the innate immune system. They circulate in the blood, but also exit to surrounding tissues, differentiate into macrophages, and patrol the body disposing of pathogens and dead cells. Under certain conditions, macrophages can become either tolerant of pathogens or trained to react against additional infections. This training of macrophages is a recently discovered process, and aside from providing a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies