Epigenetics of Trained Innate Immunity

Documenting the epigenetic landscape of human innate immune cells reveals pathways essential for training macrophages.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, CHRISTOPH BOCK (MAX PLANCK INSTITUTE FOR INFORMATICS)Genome-wide epigenetic and transcription analyses of monocytes and macrophages have uncovered two crucial pathways driving macrophage training—a recently discovered form of innate immune memory—according to two studies published in Science today (September 25). Together with a third paper documenting the transcriptional diversity of early immune cell progenitors, the studies present the latest results from the ongoing European BLUEPRINT initiative, which aims to decipher the epigenomes of blood cells during health and disease.

“They did a very thorough transcriptomic and epigenomic analysis of these cells and . . . they uncover not just immunologic pathways, which would be expected, but also, interestingly, some metabolic pathways that may be important to the different immunologic phenotypes of these cells,” said Ofer Levy of Boston Children’s Hospital and Harvard Medical School who was not involved in the studies.

Monocytes are part of the innate immune system. They circulate in the blood, but also exit to surrounding tissues, differentiate into macrophages, and patrol the body disposing of pathogens and dead cells. Under certain conditions, macrophages can become either tolerant of pathogens or trained to react against additional infections. This training of macrophages is a recently discovered process, and aside from providing a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer