Epigenetic mutations, such as changes in the patterns of DNA methylation, occur much often more in the thale cress (Arabidopsis thaliana) genome than genetic mutations that alter the DNA bases, but at a low enough rate to be subject to natural selection, according to a study published today (May 11) in PNAS.

Methylation on the DNA base cytosine can regulate the expression of genes and transposable elements in organisms including the model plant A. thaliana, in which 14 percent of the cytosines are methylated. While some methylation marks are maintained from generation to generation in A. thaliana, others are rapidly acquired or lost over time.

To understand if these methylation changes can be subject to natural selection, researchers from the University of Groningen in the Netherlands, the University of Georgia, and the University of Minnesota mapped cytosine methylation at single-base resolution over...

“Epigenetic mutations are about 100,000 times more likely than DNA sequence mutations,” study coauthor Frank Johannes of Groningen said in a statement. Importantly, however, the epigenetic mutation rate is still low enough to be subject to natural selection, the authors wrote in their paper. With the first estimates of cytosine methylation gain and loss in A. thaliana, “we are now in a position to quantify these dynamics precisely on a genome-wide scale,” Johannes added.

Interested in reading more?

The Scientist ARCHIVES

Become a Member of

Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member?