Evaluating Epigenome-Targeting Cancer Therapies

At the annual American Association for Cancer Research meeting, researchers discuss the importance of understanding the epigenetic contributors to cancer progression and treatment response.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, QUBEATCancer is primarily a disease of aberrant cell identity, and cell identity is largely controlled by epigenetics. Thus, it’s no surprise that “many cancers appear to be epigenetic diseases or have a very prominent epigenetic component,” said Jean-Pierre Issa, director of the Fels Institute for Cancer Research & Molecular Biology at Temple University in Philadelphia.

The mechanisms of epigenetic influence are numerous. Changes in epigenetic marks can directly affect cell identity, which in turn can affect various cellular phenotypes. Epigenetics are also important for controlling the expression of repeat elements such as retrotransposons. Indeed, it’s known that many cancers experience a loss of LINE1 methylation, which leads to the activation of the LINE1 transposon and, often, worse patient outcomes.

A handful of epigenetic therapies have already been approved by the US Food and Drug Administration (FDA), and many more are in development. Issa and other presenters at a session on epigenetics at the ongoing American Association for Cancer Research (AACR) annual meeting today (April 3) reviewed what is known about approved epigenome-modulating drugs and discussed several drug candidates that have ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer