Eyes Track Dream Scenes

In vivo recordings from humans reveal that brain activity related to seeing pictures correlates with eye movements during REM sleep.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

PIXABAY, GIULIAMARThe stage of sleep in which we dream is characterized by flickering eye movements (REM, after all, stands for rapid eye movement). But whether that activity beneath the eyelids correlates to what’s happening in our dreams has been tough to work out. Using in vivo neural recordings from human participants, scientists have now shown that immediately after an eye movement, activity in a brain region related to processing images spikes.

“We are intimately familiar with the activity of these neurons. We know they are active every time you look at an image, or when you imagine that image. And now we see them active in a similar way when you move your eyes in REM sleep, so it becomes very probable that the eye movements represent some type of reset, or ‘moving onto the next dream frame,’” Yuval Nir of Tel Aviv University told the BBC News. He and his colleagues published their results this week (August 11) in Nature Communications.

Nir’s team took advantage of a rare opportunity to record human brains: they enrolled epilepsy patients who had electrodes implanted to monitor seizures. The researchers tracked the neural performance of the medial temporal lobe ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH