Failed Drugs Expose Preclinical Blunders

Once a promising cancer treatment, the failure of PARP inhibitors in the clinic may be due to flawed preclinical studies.

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

WIKIMEDIA COMMONS, TOM VARCO

In January 2011, a phase III clinical trial for a highly touted new cancer therapy called iniparib, which inhibits a class of DNA-repair proteins called poly(ADP-ribose) polymerases, or PARPs, failed to prolong survival in metastatic breast cancer patients. Then in December, another leading PARP inhibitor, olaparib, performed poorly in a phase II clinical trial against ovarian cancer. Prior to large clinical trials, both drugs had shown promising, though unpublished, preclinical results, and were considered the “next big thing” in cancer therapy. But after the two failures, “clinicians were saying they didn't want to open any more clinical trials of PARP inhibitors,” Scott Kaufmann, a researcher at the Mayo Clinic in Rochester, Minnesota, told Nature.

So Kaufmann’s lab took a closer took at iniparib. Their results, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Megan Scudellari

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours