First Micrographs of Myxobacteria Forming Fruiting Bodies

By ditching traditional agar-based media, two biochemists captured iconic images of Myxococcus in 1982.

Written byTracy Vence
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

AGGREGATION IN ACTION: Dale Kaiser and Jerry Kuner’s panel of six electron micrographs shows aggregation and the formation of a fruiting body by Myxococcus xanthus strain DK 1622 cells. The researchers starved these bacteria of nutrients over the course of 72 hours by replacing a liquid growth medium with distilled water. With the addition of a calcium chloride solution, bacteria kept at a constant pH (6.8) aggregated and then formed a fruiting body—a cluster of cells that would later be filled with spores. The resulting time-lapse micrographs remain some of the clearest pictures of fruiting body formation in this gram-negative bacterium.J BACTERIOL, 151:458-61, 1982Starting in the late 1970s, Stanford University’s Dale Kaiser worked for years to visualize a certain bacterial phenomenon. Microbiologists had known that, when starved, some soil-dwelling myxobacteria aggregate, forming so-called fruiting bodies full of hardy spores. Yet capturing this behavior in action, Kaiser found, was a challenge.

Working with a strain of Myxococcus xanthus, Kaiser and his then graduate student Jerry Kuner had the idea that perhaps the medium was holding them back. They decided to abandon traditional, solid agar—which often contained impurities, compromising starvation and fouling imaging studies—and opted instead to culture the cells in a defined liquid medium.

The team at first grew M. xanthus cells in a minimally nutritive liquid medium Kaiser and another colleague described in February 1978, called CTT. Overnight, the cells formed a film at the bottom of the dish, so adherent that the researchers could replace the liquid medium with water without disturbing the bacteria, effectively starving the cells, which then aggregated and formed fruiting bodies.

Culturing a less adherent mutant strain of M. xanthus ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies