Four Sets of Mice Call Popular Autism Theory into Question

Signaling imbalance, driven by too much excitatory activity, may be a consequence of whatever brain changes lead to autism rather than a cause of the condition.

Written bySarah DeWeerdt
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, DRA_SCHWARTZ

An analysis of four mouse models negates certain assumptions underlying the “signaling imbalance theory,” a popular hypothesis about autism’s origins in the brain. The findings suggest that the imbalance is a compensatory response to other problems in the brain, rather than the underlying cause of autism.

The signaling imbalance theory holds that the brains of autistic people have too much excitatory brain activity and not enough inhibitory signals to counteract it. This imbalance then causes neurons to fire too often, the theory goes, and contributes to motor problems, sensory hypersensitivity and other autism traits.

This hypothesis, first suggested in 2003, is so popular that it is often cited as fact.

The new study questions its underlying assumptions, however. The researchers did find a skewed signaling balance but not the unusually high rate of neuronal firing, or “spikes.”

“It’s not as straightforward as the classic hypothesis is ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies