From Stem Cell to Oocyte In a Dish

For the first time, scientists generate functional mouse eggs from stem cells in culture.

Written byAnna Azvolinsky
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Meosis II murine oocytes developed in vitro from tail-derived iPSCsKATSUHIKO HAYASHI, KYUSHU UNIVERSITY, JAPAN Scientists have for this first time reprogrammed murine embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) into fully functional oocytes in the laboratory. The paper describing the technique, published today (October 17) in Nature, provides a blueprint to study theprocess of oogenesis, and paves the way to attempt a similar technique using human ESCs and iPSCs.

“This is truly a crowning achievement,” said oocyte biologist David Albertini, director of the Center for Human Reproduction in New York City, who was not involved in the work.

“It’s remarkable that . . . in vitro eggs from mouse stem cells used for reproduction,” Dieter Egli, a regenerative medicine specialist at the New York Stem Cell Foundation and Columbia University who was also not involved in the study wrote in an email to The Scientist.

In mice, oocytes are derived from primordial germ cells (PGCs), which form around day 6.5 of embryonic development. In female embryos, the PGCs make their way to what will turn into the ovary and enter meiosis to form primary oocytes, which begin to mature following puberty. Previously, Katsuhiko Hayashi ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform