From the Ground Up

Instrumental in launching Arabidopsis thaliana as a model system, Elliot Meyerowitz has since driven the use of computational modeling to study developmental biology.

Written byAnna Azvolinsky
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

ELLIOT MEYEROWITZ
George W. Beadle Professor of Biology
California Institute of Technology
Investigator, Howard Hughes Medical Institute
© ROB GREER PHOTOGRAPHY
In 1980, Elliot Meyerowitz was a newly minted assistant professor of biology at the California Institute of Technology (Caltech) studying Drosophila melanogaster development. He was asked to teach a graduate genetics seminar, and after leading the session on plant development and discussing the subject with his then graduate student Robert Pruitt, he decided, with Pruitt, to dabble in plant genetics using Arabidopsis thaliana. Meyerowitz had become interested in plant genetics in graduate school and thought that there were opportunities to apply molecular cloning—a new technique that he had learned as a postdoc at Stanford University—to plants.

“The literature indicated that the Arabidopsis genome was relatively small, which at the time, was a prerequisite for molecular cloning. And the attempts to do mutagenesis in plants showed that chemical mutagenesis appeared very effective and that the genes segregated in a Mendelian fashion, which is not true in many plants because of polyploidy,” Meyerowitz says. “Arabidopsis self-fertilizes, so you can get homozygous mutants quickly and have more than 10,000 seeds from these small plants. You could grow a million plants in a boiler room instead of needing 50 acres to grow corn!”

“I think if animal developmental biologists were more open-minded about plant research, biology overall would benefit.”

Supplied with Arabidopsis seeds by Pruitt’s uncle, a plant breeder at Washington State University, the Meyerowitz ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH