Gene Expression Analysis Gets Gassy

Soil scientists use a gas-producing reporter system to assess gene activity in bacteria.

Written byRuth Williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Fluorescent reporter proteins have revolutionized gene expression analysis, but their use is limited to more-or-less transparent systems, such as single cells or zebrafish larvae. For researchers studying organisms that live in soil, using these visual reporters is infeasible in any but the thinnest of samples, says environmental and synthetic biologist Jonathan Silberg of Rice University.

“We can analyze cultured microbes in exquisite detail,” adds biogeochemist Caroline Masiello, also at Rice. “But the question is—does it matter at the scale of an ecosystem?” Silberg, Masiello, and colleagues have devised a new gas reporter system that can be used to detect the presence and activity of microbes in opaque samples of any size.

Ecologists often use headspace gas analysis to measure common bacterially produced gases, such as carbon dioxide and methane, without disrupting the soil or sediment sample. If bacteria could be genetically engineered to produce unusual gases, the team reasoned, they ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

June 2018

Microbial Treasure

Newly discovered archaea reveal bizarre biology

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies