Green Warriors: Algae Microrobots Set to Combat Metastasis

Green algae can be outfitted with nanoparticles, transforming them into efficient drug-delivering machines that target lung tumors.

Written byLaura Tran, PhD
| 4 min read
Pseudo-colored scanning electron microscope image of the algae microrobot with the algae in green and the drug-filled nanoparticles in orange.
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

The lungs are a prominent target for cancer metastasis. Traditional drug delivery methods rely on passive diffusion, but Joseph Wang and Liangfang Zhang, both nanoengineers at the University of California, San Diego, wanted to test active and targeted systems. In a new study, the duo explored the potential of using green algae, Chlamydomonas reinhardtii, as a promising platform for drug delivery because it self-propels, carries cargo on its surface, and is biocompatible.1 “This active propulsion plays an important role in improving the efficacy,” said Zhang.

Headshot of bioengineer Joseph Wang from the University of California, San Diego. He is wearing glasses and a white shirt under a black jacket.
Joseph Wang, a bioengineer at the University of California, San Diego, combines his expertise in robotics with longtime colleague Liangfang Zhang.
University of California, San Diego

Their findings, published in Science Advances, described the development of biohybrid microrobots from green algae laden with chemotherapeutic drugs which reduced lung metastasis burden and prolonged survival time in mice.2 Enhancing microalgae with additional functionalities could further improve drug delivery strategies.

“Green algae serve as a mothership,” explained Zhang. “They carry hundreds to thousands of nanoparticles loaded with drug molecules.”

The researchers developed microrobots by chemically attaching nanoparticles (NP) to the surface of the algal cells. The nanoparticles were biodegradable polymer spheres filled with the chemotherapeutic drug doxorubicin (DOX) and coated with red blood cell membranes [NP(DOX)]. This cell membrane coating shielded the drug payload from the immune system.

Then, the team characterized the algae-NP(DOX)-robots and used fluorescent and scanning electron microscopy to confirm that the nanoparticles successfully hitched a ride onto the microalgae. When comparing NP(DOX) and algae-NP(DOX)-robots, the microrobots more effectively inhibited cancer cell growth and proliferation.

Next, they tested the biorobots’ therapeutic efficacy in mice over time. “When you dose these to the lungs…this robotic system will be activated as they start to swim in the lung fluid,” explained Zhang. They administered mice with 70 microgram of a 75 microgram dose of DOX to the lungs and found that more of the drugs from the algae-NP(DOX)-robots remained in the lungs after 24 hours.

Headshot of bioengineer Liangfang Zhang. He smiles at the camera. He is wearing glasses and is wearing a light blue shirt under a dark blue jacket.
Liangfang Zhang, a bioengineer at the University of California, San Diego, merges his leadership in drug delivery and nanomedicine with Wang’s robotics expertise.
University of California, San Diego

The next challenge was to determine how the microrobots would be cleared from the body. After 24 hours of incubation with murine alveolar macrophages, only 25 percent of DOX from algae-NP(DOX) microrobots was absorbed, compared to 70 percent from nanoparticles. Researchers suggest that the microalgae’s motility enabled deeper lung penetration and extended drug retention.

Then, they tested microrobots on mice with lung-metastasized melanoma by administering four 75 microgram DOX doses over a week. Bioluminescence results indicated that algae-NP(DOX) microrobots inhibited metastasis more effectively and extended the median survival from 27 to 37 days compared to free drug or NP(DOX) alone.

“Biohybrid [technology] is exciting because they’re living drugs. They can respond to their environment…it definitely has huge potential,” said Yunus Alapan, a bioengineer at the University of Wisconsin-Madison, who was not involved in the study. He noted his excitement toward this convergence of robotics and biology to create microrobots to respond to different microenvironments.

Wang and Zhang plan to test the scalability of these microrobots and explore their therapeutic benefits in larger animal models. Additionally, they are investigating other algae, including extremophiles that thrive in harsh conditions, to tailor the diverse properties of algae to specific applications. “The possibilities are unlimited. Just imagine a multifunctional Swiss knife [microrobot] that is 20 micrometers…all without any battery or electronics,” remarked Wang.

Related Topics

Meet the Author

  • Laura Tran, PhD

    Laura Tran is an Assistant Editor at The Scientist. She has a background in microbiology. Laura earned her PhD in integrated biomedical sciences from Rush University, studying how circadian rhythms and alcohol impact the gut. While completing her studies, she wrote for the Chicago Council on Science and Technology and participated in ComSciCon Chicago in 2022. In 2023, Laura became a science communication fellow with OMSI, continuing her passion for accessible science storytelling.

    View Full Profile
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo