Gut Bacteria for Insect RNAi

Lacing insect food with microbes encoding double-stranded RNAs can suppress insect gene expression.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

EATING UP INTERFERENCE: To control reproduction in Rhodnius prolixus, which spreads Chagas disease, researchers introduce double-stranded RNA via bacteria mixed into the insect’s food. The blood meal contains commensal gut microbes that have been genetically engineered to express the RNA, which blocks the expression of a gene involved in producing offspring (1). Such RNA interference can spread to other individuals who eat the treated insect’s feces (2). Control animals produced roughly 70 percent more offspring than treated ones (3).
See full infographic: WEB
© GEORGE RETSECK

RNA interference (RNAi)—the use of a double-stranded RNA (dsRNA) to trigger the destruction of a corresponding gene’s messenger RNA—is a popular method for ascertaining gene function. But for entomologists there’s a problem. “We have a major challenge with insects in terms of getting an effective and efficient delivery mechanism,” says Owain Edwards of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Canberra, Australia.

Current dsRNA delivery methods include ingestion and injection, but the primary issue with both of these is the transient availability of dsRNA once inside the insects—thus necessitating a continuous supply. Injection can also cause trauma, especially to smaller insects.

To prolong RNAi’s effects in insects and to develop a gentler mode of delivery, Paul Dyson, Miranda Whitten, and colleagues at Swansea ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

June 2016

Found in Translation

Some supposedly nonfunctional RNA molecules encode functional peptides

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies