Gut Microbes Gobble Cocoa

Commensal bacteria that populate the human gastrointestinal tract help digest dark chocolate, releasing anti-inflammatory compounds, researchers report.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

FLICKR, CART-WHEELSMicrobes like Bifidobacterium and lactic acid bacteria that reside in the human gut “feast on chocolate,” said Louisiana State University’s Maria Moore, an undergraduate student who assisted on a research that examined the effects of dark chocolate on gut bacteria, in a statement released at the American Chemical Society’s annual meeting being held in Dallas, Texas, this week. “When you eat dark chocolate, [these bacteria] grow and ferment it, producing compounds that are anti-inflammatory,” Moore added.

In in vitro experiments meant to model the human digestive tract, LSU food scientist John Finley’s team tested three cocoa powders, subjecting the substances to anaerobic fermentation using human fecal bacteria. The researchers found that, within the mock gut, the cocoa’s fiber content “is fermented and the large polyphenolic polymers are metabolized to smaller molecules, which are more easily absorbed,” Finley said in the statement. They also found that the smaller molecules “exhibit anti-inflammatory activity.” And gut microbes could help reduce a person’s feeling of hunger after having digested cocoa. “The microbes break down the fiber into short fatty chain acids, which get absorbed and can have an effect on satiety,” Finley told NPR’s The Salt blog.

The researchers have yet to confirm their results ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Tracy Vence

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide