Heritable Histones

Scientists show how roundworm daughter cells remember the histone modification patterns of their parents.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

C. elegans cells showing H3K27me labellingLAURA GAYDOSAfter DNA replication and division, cells generally remember which of their genes should be active and which repressed—but how? A study in worms published today (September 18) in Science reveals that part of the mechanism involves divvying up modified histones—molecular tags that label active or repressed genes—between daughter chromosomes at replication. Researchers from the University of California, Santa Cruz and Indiana University, Bloomington, found that although the tags in each chromosome are reduced as a result of division, subsequent recruitment of histone-modifying enzymes reestablishes the full tag quota, thus preserving the memory of modifications for the next round of division.

“They show very elegantly using their system that modified histones can be inherited through multiple rounds of cell division and can be passed on . . . to the next generation,” said Shiv Grewal, an epigenetics and chromatin researcher at the National Cancer Institute who was not involved in the work. “That’s quite remarkable.”

Histones, the proteins around which DNA is wrapped to form chromatin, can be modified by the addition a various moieties. And such modifications are thought to represent—and even influence—the transcriptional activity of associated genes. Although the presence of these modifications at given genomic locations can be inherited from a parent cell to its daughters, exactly how this landscape of histone modifications is reestablished after DNA replication—when the histones are temporarily evicted ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome