How Bacteria Interfere with Insect Reproduction

Scientists identify the genes responsible for bacteria-controlled sterility in arthropods.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Wolbachia (red) in insect testes (blue)VANDERBILT UNIVERSITY, SETH BORDENSTEINTwo papers published in Nature and Nature Microbiology yesterday (February 27) resolve one of the longest-standing puzzles in entomology: how Wolbachia bacteria cause cytoplasmic incompatibility (CI) in their insect hosts. This strategic sterility, in which bacteria-infected female insects can reproduce readily while uninfected ones struggle, turns out to be regulated by two neighboring bacterial genes that encode interacting proteins. The identification of the genes could aid research into, among other things, Wolbachia-based insect–control strategies.

“It’s really exciting,” said microbiologist Steven Sinkins of the University of Glasgow, U.K., who was not involved in the work. “For Wolbachia researchers this has been the big unanswered question—how the bacteria induce this reproductive manipulation—and this is a convincing breakthrough in terms of identifying the genes that are responsible.”

Wolbachia bacteria are intracellular parasites that infect approximately two-thirds of the world’s arthropods. Passed onto offspring via infection of the egg, but not sperm, these bacteria have developed a range of reproduction-manipulating mechanisms that ensure their continued prevalence. Chief among these is CI, a phenomenon in which infected males can only successfully reproduce with infected females. Matings with uninfected females result in early embryonic death. In some cases, matings with females carrying a competing Wolbachia ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel