How Bacteria Interfere with Insect Reproduction

Scientists identify the genes responsible for bacteria-controlled sterility in arthropods.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Wolbachia (red) in insect testes (blue)VANDERBILT UNIVERSITY, SETH BORDENSTEINTwo papers published in Nature and Nature Microbiology yesterday (February 27) resolve one of the longest-standing puzzles in entomology: how Wolbachia bacteria cause cytoplasmic incompatibility (CI) in their insect hosts. This strategic sterility, in which bacteria-infected female insects can reproduce readily while uninfected ones struggle, turns out to be regulated by two neighboring bacterial genes that encode interacting proteins. The identification of the genes could aid research into, among other things, Wolbachia-based insect–control strategies.

“It’s really exciting,” said microbiologist Steven Sinkins of the University of Glasgow, U.K., who was not involved in the work. “For Wolbachia researchers this has been the big unanswered question—how the bacteria induce this reproductive manipulation—and this is a convincing breakthrough in terms of identifying the genes that are responsible.”

Wolbachia bacteria are intracellular parasites that infect approximately two-thirds of the world’s arthropods. Passed onto offspring via infection of the egg, but not sperm, these bacteria have developed a range of reproduction-manipulating mechanisms that ensure their continued prevalence. Chief among these is CI, a phenomenon in which infected males can only successfully reproduce with infected females. Matings with uninfected females result in early embryonic death. In some cases, matings with females carrying a competing Wolbachia ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Pairing Protein Engineering and Cellular Assays

Pairing Protein Engineering and Cellular Assays

Lonza
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo

Products

Sapio Sciences logo

Sapio Sciences Introduces Biorepository Management Solution 

Metrion Biosciences Logo

Metrion Biosciences launches NaV1.9 high-throughput screening assay to strengthen screening portfolio and advance research on new medicines for pain

Biotium Logo

Biotium Unveils New Assay Kit with Exceptional RNase Detection Sensitivity

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China