How HIV Can Escape an Experimental CRISPR Therapy

Targeting HIV-1 with CRISPR/Cas9 stops the virus from replicating, but can also help it escape, two recent studies show.

Written byTanya Lewis
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, NIAIDCRISPR/Cas9 gene editing has shown remarkable therapeutic potential, including the ability to fight pathogens like HIV. But the same process that inactivates the deadly virus may also enable it to escape the treatment, according to research led by Chen Liang of McGill University in Montreal, published today (April 7) in Cell Reports.

“It’s very nice work which offers important information related to development and use of CRISPR/Cas9 for suppressing viruses—in this case, HIV infection,” neuroscientist Kamel Khalili of Temple University’s Lewis Katz School of Medicine in Philadelphia who was not part of the study told The Scientist. “Their data suggest targeting a single site within a viral gene can accelerate viral escape and emergence of mutant virus that remains resistant to initial targeting molecules.”

The findings essentially replicate those of another group, led by Atze Das of the Center for Infection and Immunity Amsterdam. The Das team’s findings appeared last month (February 16) in Molecular Therapy.

“We both demonstrated HIV-1 can be inhibited by the CRISPR/Cas system, and [that] the virus can escape,” Das, who was not ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH