How Poison Frogs Avoid Poisoning Themselves

Amphibians resist their own chemical defenses with amino acid modifications in the sequence for a target receptor.

abby olena
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

The phantasmal poison frog, Epipedobates anthonyi, is the original source of epibatidine, discovered by John Daly in 1974. In fact, epibatidine is named for frogs of this genus. Epibatidine has not been found in any animal outside of Ecuador, and its ultimate source, proposed to be an arthropod, remains unknown. This frog was captured at a banana plantation in the Azuay province in southern Ecuador in August 2017.REBECCA TARVIN

Poison frogs become poisonous by isolating chemicals from their food and storing them in their skin. One such compound, epibatidine, is a stronger painkiller than morphine, but has not been tested in humans because even low doses are deadly to rodents. But for the frogs themselves, this powerful neurotoxin is totally impotent.

According to a study published today (September 21) in Science, several groups of epibatidine-bearing frogs have independently evolved amino acid changes in the toxin’s target, the nicotinic acetylecholine receptor. These modifications allow the amphibians to escape self-toxicity, yet preserve the receptor’s ability to bind the neurotransmitter acetylcholine.

The authors “show DNA sequence changes [and] amino acid sequence changes that have happened multiple times in multiple lineages of frogs,” says Joel McGlothin, an evolutionary ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours