How Red Blood Cells Get Their Dimples

Myosin proteins tug on the cell membrane, giving an erythrocyte its distinct shape.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A.S. Smith et al., “Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability,” PNAS, 115:E4377–85, 2018.

Healthy red blood cells are puffy with a dimpled middle. “It’s just a really cool shape,” says Velia Fowler, a cell biologist at The Scripps Research Institute in San Diego. For decades, researchers have been wondering what gives red blood cells their characteristic curves, and now Fowler and her colleagues have the answer: myosin proteins tug on the red blood cell’s cytoskeletal membrane, creating a divot at the center.

Back in the 1980s, when Fowler started working with red blood cells, it wasn’t clear whether they even contained myosin. She suspected they might, because the protein appeared to play a role in giving other cells their shapes. After painstaking experiments, Fowler finally showed that red blood cells do carry the protein, but exactly how it influenced ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley Yeager

    Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

Published In

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer