How Statistics Weakened mRNA’s Predictive Power

Transcript abundance isn’t a reliable indicator of protein quantity, contrary to studies’ suggestions.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, NICOLLE RAGER, NATIONAL SCIENCE FOUNDATIONUsing the quantity of messenger RNA (mRNA) as a proxy for protein abundance could be risky, concludes a paper published in PLOS Computational Biology today (May 22). The authors examined data from previous proteomic studies, and their new statistical calculations revealed that while mRNA levels can be a useful guide to protein levels when comparing different genes, relying on mRNA to evaluate the same gene in different tissues can be rather misleading.

“There has been controversy over the question of how well mRNA levels can predict protein levels,” said cell and molecular biologist Marko Jovanovic of Columbia University who was not involved in the study. “A few papers claim that their predictive power is very limited, others say they predict it very well. . . . The problem [is] that it depends what you are looking at—are you interested in the expression differences of different genes within the same tissues, or of the same gene in different tissues? Here, [the authors] have nicely separated these two, which is crucially important.”

In 2014, two papers published in Nature provided the first draft maps of the human proteome—each detailing the abundance and distribution of the assorted proteins throughout the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies