How the Brain Changes on Ketamine: A Live Animal Study

The drug promotes and sustains brain cell connectivity in mice, reversing the effects of chronic stress.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, MAKAULE

Imaging of neurons in the brains of living mice reveals how synapses between cells are eliminated in response to stress and reinstated by an antidepressant dose of ketamine. The findings, which are presented in Science today (April 11), show that while ketamine-induced changes in behavior precede this synaptogenesis, the increased connectivity is required to maintain the drug-modified behavior.

“It’s beautiful work. It’s very elegant and technically sophisticated,” says neuroscientist Jason Radley of the University of Iowa who was not involved with the research. “I think this paper is poised to make a significant contribution.”

“They trace the whole [process] from before stress, after stress, and then after ketamine,” says psychiatrist and neuroscientist Alex Kwan of Yale School of Medicine who also did not participate in the research, “and they have some very interesting findings in terms of how ketamine affects prefrontal cortical circuits.”

The paper is ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio