Icelanders’ Genomes Hint at Origins of Genetic Diversity

An analysis of 14,000 genomes reveals regions where new mutations are more likely to develop.

Written byAshley Yeager
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ISTOCK, BET_NOIREDads pass on many more new genetic mutations to their children than moms. But maternal mutations are surprisingly common in specific regions of the genome, a new study suggests. The results give clues to how age and sex contribute to the development of new mutations in the human genome, and the influence of these factors on genetic diversity and evolution.

In the study, researchers analyzed whole-genome data from more than 14,000 Icelanders, including 1,500 sets of parents and children. The team identified 108,778 de novo mutations, which comprise the most complete catalog of new human mutations to date. The results appear today (September 20) in Nature.

Study coauthor Kári Stefánsson and CEO of deCODE, a genetic analysis company, explains that de novo mutations spur evolution by continually generating new versions of the human genome. It’s not yet clear how these mutations develop in the genome. But by cataloguing the changes in thousands of people, the new results offer insight into the role age and sex play and provide clues to potential mechanisms underlying the mutations. The researchers say that a comprehensive catalog could also help ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH