A machine learning algorithm revealed that coevolving butterflies “borrow” physical features from each other, such as wing shape and pattern, and use them to generate novel features over time, researchers reported August 14 in Science Advances. The scientists set out to test a model known as Müllerian mimicry, which proposes that species sometimes mimic each other to glean mutual benefits; for instance, a predator might mistake an edible butterfly for a toxic one if the insects look similar, which softens the effect of predation on both species. In the past, it was difficult to quantify phenotypic similarity and thereby test the theory.
“Machine learning is allowing us to enter a new phenomic age, in which we are able to analyse biological...
J.F.H. Cuthill et al., “Deep learning on butterfly phenotypes tests evolution’s oldest mathematical model,” doi:10.1126/sciadv.aaw4967, Sci Adv, 2019.
Nicoletta Lanese is an intern at The Scientist. Email her at nlanese@the-scientist.com.