Image of the Day: ButterflyNet

Scientists used machine learning to analyze the coevolution of physical traits in butterflies.

Written byNicoletta Lanese
| 1 min read
Co-mimic pairs from the species Heliconius erato (odd columns) and Heliconius melpomene (even column) sorted by greatest similarity from top left to bottom right

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

ABOVE: Co-mimic pairs from the species Heliconius erato (odd columns) and Heliconius melpomene (even column) sorted by greatest similarity from top left to bottom right.
J HOYAL CUTHILL

A machine learning algorithm revealed that coevolving butterflies “borrow” physical features from each other, such as wing shape and pattern, and use them to generate novel features over time, researchers reported August 14 in Science Advances. The scientists set out to test a model known as Müllerian mimicry, which proposes that species sometimes mimic each other to glean mutual benefits; for instance, a predator might mistake an edible butterfly for a toxic one if the insects look similar, which softens the effect of predation on both species. In the past, it was difficult to quantify phenotypic similarity and thereby test the theory.

“Machine learning is allowing us to enter a new phenomic age, in which we are able to analyse biological phenotypes?—what species ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control