Image of the Day: ButterflyNet

Scientists used machine learning to analyze the coevolution of physical traits in butterflies.

| 1 min read
Co-mimic pairs from the species Heliconius erato (odd columns) and Heliconius melpomene (even column) sorted by greatest similarity from top left to bottom right

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

ABOVE: Co-mimic pairs from the species Heliconius erato (odd columns) and Heliconius melpomene (even column) sorted by greatest similarity from top left to bottom right.
J HOYAL CUTHILL

A machine learning algorithm revealed that coevolving butterflies “borrow” physical features from each other, such as wing shape and pattern, and use them to generate novel features over time, researchers reported August 14 in Science Advances. The scientists set out to test a model known as Müllerian mimicry, which proposes that species sometimes mimic each other to glean mutual benefits; for instance, a predator might mistake an edible butterfly for a toxic one if the insects look similar, which softens the effect of predation on both species. In the past, it was difficult to quantify phenotypic similarity and thereby test the theory.

“Machine learning is allowing us to enter a new phenomic age, in which we are able to analyse biological phenotypes?—what species ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo