Implanted Magnetic Probes Measure Brain Activity

Micrometer-size magnetrodes detect activity-generated magnetic fields within living brains.

ruth williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ANIMAL MAGNETISM: Light shone into one eye of an anesthetized cat stimulates electrical activity in the visual cortex. A magnetrode (green) inserted less than a millimeter into the visual cortex detects the magnetic fields created by this electrical activity. Insertion of an electrode adjacent to the magnetrode allows researchers to gather and compare electrical current and magnetic field data at the same time.© GEORGE RETSECK

The brain is often described in terms of its wiring, connections, and circuits, and such language is not merely an analogy to a building’s electrical infrastructure. Neurons control the flow of charged ions—receiving, perpetuating, and discharging currents—to perform their essential functions.

Analyzing the brain’s electrical activity to gain insights into its function can be achieved with electrodes either placed upon the scalp—as in electroencephalograms (EEGs)—or inserted into the brain. But electrical currents also produce magnetic fields, and detecting these fields can offer several advantages over voltage measurements, says Myriam Pannetier-Lecoeur of the French Alternative Energies and Atomic Energy Commission.

For example, while electrical fields and voltage measurements are distorted by the insulating or conductive properties of surrounding tissues, magnetic fields are not. Furthermore, electrodes are ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.

Published In

November 2017

The Mosaic Brain

Functional implications of a complex neural ecosystem

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo