FLICKR, WOLFGANG STIEF A modified way to transfer nuclear DNA from a woman’s oocyte into a donor oocyte may result in a more efficient mitochondrial replacement therapy (MRT), which could decrease the risk of passing mitochondria DNA (mtDNA) disease on to offspring. MRT—a modified in vitro fertilization technique that results in a “three-parent” offspring—promises to give women with faulty mtDNA the chance to have children of their own without the risk of passing on maternally inherited mitochondrial disease. Yet current methods for transferring the mother’s nuclear DNA still allow some of the defective mitochondria to hitch a ride into the donor egg. In a study published today (June 8) in Nature, researchers at Newcastle University in the U.K. and their colleagues report having improved upon the pronuclear transfer technique, increasing the number of viable zygotes produced and reducing the number of defective mitochondria transferred along with nuclear DNA to the donor cell.
“It’s a very beautiful and carefully conducted study that has improved the pronuclear transfer technique,” said Dieter Egli, a regenerative medicine specialist at the New York Stem Cell Foundation and Columbia University who was not involved in the work.
Stem cell researcher Paul Knoepfler of the University of California, Davis, who was also not involved in the study, agreed. “The authors were able to optimize pronuclear transfer to a point where mitochondrial carryover was not a common problem,” he told The Scientist. “But this is exactly the kind of data we need more of in the future to clarify the way forward for [MRT].”
One form of MRT is the transfer of a nucleus from the mother’s oocyte into a donor, enucleated oocyte with healthy ...