Improving Mitochondrial Replacement Therapy

Pronuclear transfer can reduce the risk of transferring defective mitochondria, a study shows.

Written byAnna Azvolinsky
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

FLICKR, WOLFGANG STIEF A modified way to transfer nuclear DNA from a woman’s oocyte into a donor oocyte may result in a more efficient mitochondrial replacement therapy (MRT), which could decrease the risk of passing mitochondria DNA (mtDNA) disease on to offspring. MRT—a modified in vitro fertilization technique that results in a “three-parent” offspring—promises to give women with faulty mtDNA the chance to have children of their own without the risk of passing on maternally inherited mitochondrial disease. Yet current methods for transferring the mother’s nuclear DNA still allow some of the defective mitochondria to hitch a ride into the donor egg. In a study published today (June 8) in Nature, researchers at Newcastle University in the U.K. and their colleagues report having improved upon the pronuclear transfer technique, increasing the number of viable zygotes produced and reducing the number of defective mitochondria transferred along with nuclear DNA to the donor cell.

“It’s a very beautiful and carefully conducted study that has improved the pronuclear transfer technique,” said Dieter Egli, a regenerative medicine specialist at the New York Stem Cell Foundation and Columbia University who was not involved in the work.

Stem cell researcher Paul Knoepfler of the University of California, Davis, who was also not involved in the study, agreed. “The authors were able to optimize pronuclear transfer to a point where mitochondrial carryover was not a common problem,” he told The Scientist. “But this is exactly the kind of data we need more of in the future to clarify the way forward for [MRT].”

One form of MRT is the transfer of a nucleus from the mother’s oocyte into a donor, enucleated oocyte with healthy ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control