In a Warming Climate, Seaweed’s Microbiome May Mediate Disease

Kelp in warm, acidified waters develop blistered fronds—and the composition of microbial communities could help explain why, a study suggests.

Written byCarolyn Wilke
| 4 min read
Australia’s Great Southern Reef kelp

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Global warming could be indirectly harming kelp forests in Australia’s Great Southern Reef by altering the composition of the kelp microbiome, a study finds.
© FLICKR.COM, JOHN TURNBULL

Stretching 8,000 kilometers along the southern coast of Australia, the Great Southern Reef is an underappreciated biodiversity hotspot home to hundreds of endemic species. Here, a vast kelp forest clad in the browns, golds, and greens of its seaweed denizens dominates the rocky reef, forming a habitat for myriad fish, crustaceans, and mollusks. But one species reigns over the forest: the yellowish-brown kelp Ecklonia radiata.

“It’s massive, the spread of this single species,” says Ziggy Marzinelli, an ecologist at the University of Sydney who has been studying the kelp for more than a decade. “[E. radiata] underpins a lot of the biological diversity and ecological function in this part of Australia.”

The Great Southern Reef was named by researchers in 2015 to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH