Inducing Pluripotency Every Time

By removing a single gene, adult cells can be reprogrammed into a stem-like state with nearly 100 percent efficiency.

Written byEd Yong
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, A. TANAKA ET AL.In 2007, Japanese scientist Shinya Yamanaka reprogrammed adult skin cells into a stem-like state using a quartet of genes. These induced pluripotent stem cells (iPSCs) earned Yamanaka a Nobel Prize in 2012, kicked off a flood of research, and promised a way of growing bespoke tissues.

But reprogramming techniques are still notoriously inefficient. At best, they can convert around 10 percent of adult cells into iPSCs; often, they only manage around 0.1 percent. Worse still, the process seemed random, and it was impossible to predict which cells would be successfully reprogrammed.

This roadblock may be a thing of the past. Jacob Hanna at Israel’s Weizmann Institute of Science has found a straightforward way of producing iPSCs with almost 100 percent efficiency. Hanna’s team simply disabled a single gene, Mbd3, which seems to repress pluripotency.

“I never believed we’d get to 100 percent,” said Hanna. “This shows that the process of reprogramming need not be random and inefficient. You can really control the cells much better than we thought.” He also noted ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH