Infographic: Commensal Mimicry in Autoimmune Disease

Antigens originating from the microbiome may trigger an autoimmune response.

Written byAmanda B. Keener
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Recent work indicates that antigens originating from the microbiome may look, from the perspective of immune cells, like proteins found in the human body, and may therefore trigger an autoimmune response. In several studies, researchers have found that the B and T cells that attack the body bind human proteins as well as mimics of those proteins made by commensal bacteria.

Commensal bacteria from the mouth, skin, and gut produce an ortholog of the human protein Ro60. Some of these bacteria and bacterial Ro60 activated T cells from the blood of a patient with lupus. Ro60-specific antibodies from lupus patients also bound to bacterial Ro60, suggesting commensals could have a hand in activating antibody-producing B cells involved in the autoimmune disease.

T cells isolated from the cerebrospinal fluid of several multiple sclerosis patients reacted to both the human and the bacterial versions of the protein guanosine diphosphate (GDP)-L-fucose synthase. Researchers ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH