Infographic: How General Anesthesia Works

Drugs that doctors use to sedate patients during traumatic medical procedures act on neural receptors to alter brain activity.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

General anesthetics work by altering the activity of specific neurons in the brain. One main class of these drugs, which includes propofol and the ether-derivative sevoflurane, work primarily by increasing the activity of inhibitory GABAA receptors, while a second class that includes ketamine primarily blocks excitatory NMDA receptors.

The GABAA receptor is a channel that allows chloride ions to flow into the neuron, decreasing the voltage within the cell relative to the extracellular space. Such hyper­polarization decreases the probability that the neuron will fire. Propofol and sevoflurane increase the chloride current going into the cell, making the inhibition more potent.

The NMDA receptor allows sodium and calcium ions to flow into the cell, while letting potassium ions out, increasing the voltage within the cell relative to the extra­cellular space and increasing the probability of neural firing. Ketamine blocks this receptor, decreasing its excitatory actions.

Anesthetics’ interactions with neural receptors alter ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Emery N. Brown

    This person does not yet have a bio.
  • Francisco J. Flores

    This person does not yet have a bio.

Published In

March 2019

Going Under

Dissecting the effects of anesthetics

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo