Infographic: Gassy Genes

Soil scientists get bacteria to report on what their neighbors are up to.

ruth williams
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

To detect microbial activity, E. coli bacteria are genetically engineered to produce the EFE protein constitutively and MHT in response to the bacterial communication molecule AHL. The presence of the E. coli in the soil, and the levels of AHL, in this example produced by Rhizobium bacteria, can then be detected non-disruptively using headspace gas chromatography—with the ratio of MHT-produced CH3Br to EFE- produced ethylene reflecting the concentration of AHL.

Read the full story.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit