Insect Cuticle Aids Spiders’ Traps

Prey stick to orb-weaver spider webs because their waxy outer layers mesh with spider silk to form a matrix glue.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Fruit fly covered with capture threads of the feather-legged lace weaver (Uloborus plumipes).HANA ADAMOVAThe woolly webs of orb-weaver spiders form an inescapable trap around prey. But it’s not just the threads’ tangles that ensnare meals. As researchers reported this week (May 31) in Proceedings of the Royal Society B, the waxy coating on some insects teams up with fibers from the spider web to form a composite adhesive material, gluing prey in place. Thus, in a rather dark turn of events, the insect’s cuticle promotes its own capture.

Orb-weaver spiders produce fine threads made of nanofibers, arranged like beads on a string with puffs and intermediate zones. The spiders have an organ called a cribellum, which pushes out silk strands, and rows of leg bristles that comb out the silk to produce a woolly texture.

“Cribellar threads are the most primitive form of adhesive capture threads spun by spiders,” says Brent Opell, a biologist at Virginia Tech who was not involved in the study, in an email to The Scientist. “However, this study shows that cribellar thread can implement an even greater range of adhesive mechanisms than previously thought.”

Kukulcania hibernalisFLICKR, MARSHAL HEDINUnlike other types of spiders that produce viscous silk, orb-weavers were not known to make any type of glue, yet prey appeared to get stuck in their webs for longer than in viscid webs. According to the study, scientists had supposed that intermolecular forces, such as van der Waal’s forces that help geckos walk on walls, were at play. But, these forces could not explain the efficacy with which orb-weaver webs ensnared prey.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Sandhya Sekar

    This person does not yet have a bio.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome