Instant Messaging

During development, communication between organs determines their relative final size.

Written bySavraj S. Grewal
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

© CATHERINE DELPHIAWhy is your right arm as long as your left? How does your heart grow just big enough to fit inside your chest, and not larger? Why is your head “smaller” in proportion to your body size now than when you were a baby? The question of how animal growth and size are regulated and coordinated has fascinated generations of biologists. However, the underlying mechanisms still remain unclear. In recent years, the power and versatility of Drosophila genetics, combined with some imaginative experiments by fruit fly researchers, have revealed new ideas about the control of animal growth. In particular, several recent reports using this model system have shown how organ-to-organ signaling can influence both the rate of Drosophila body growth and final organ size. These findings may provide clues about human growth as well.

As they develop, Drosophila progress through three main stages—embryo, larva, and pupa—before emerging as adult fruit flies. Virtually all body growth occurs in the larval stage, during which the fly’s mass increases approximately 200-fold in a coordinated fashion. This increase in mass is dependent on the availability of dietary protein. In the wild this protein comes in the form of the yeast that ferments sugars in rotting fruit; in the lab, larvae are fed yeast meal. Without access to sufficient protein, the early-stage larval fly slows its rate of growth and development, with complete starvation triggering growth arrest.

© MARTIN SHIELDS/SCIENCE SOURCEA large part of this nutrient-dependent increase in size is due to an increase in cell size of organs such as muscle, fat, epidermis, and gut. Nestled among these tissues are imaginal discs containing precursor cells that eventually contribute to adult structures, including the wings, legs, eyes, thorax, and antennae. Communication between these various larval tissues is emerging as an important regulator of overall growth rate and larval body size and ensures that the growth of each organ is proportional to the rest.

Although humans ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH