Interactome Analysis

Study examines tissue-specific protein interactions linked to hereditary diseases.

Written byJyoti Madhusoodanan
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

PLOS COMPUTATIONAL BIOLOGY, RUTH BARSHIR ET AL.Genes that cause hereditary diseases are often expressed across a wide range of cells in the human body, but the diseases they cause can be specific to a few tissues or organs. Many of these genes are expressed at higher levels in diseased tissues, and their proteins have a significantly greater tendency for tissue-specific protein interactions, according to a study published last week (June 12) in PLOS Computational Biology.

“Together the two factors we identified are relevant for as many as two thirds of the tissue-specific hereditary diseases [studied here],” Esti Yeger-Lotem from Israel’s Ben-Gurion University of the Negev and her colleagues wrote in their paper.

The researchers suggested that these tissue-specific interactions, known as an interactome, highlight disease mechanisms, and can provide an efficient filter to identify causal genes within diseased tissues.

To identify these interactomes, Yeger-Lotem‘s team combined gene and protein expression data for 16 different tissues, such as lung, brain, and breast, with data on protein-protein interactions within each. The researchers found all these tissues shared a core network of nearly 5,000 proteins and more than 26,000 protein-protein interactions.

When they analyzed genes linked to 303 hereditary diseases, the researchers found ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH