Into the Limelight

Glial cells were once considered neurons’ supporting actors, but new methods and model organisms are revealing their true importance in brain function.

Written byKate Yandell
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

GLIAL CELL JUNGLE: Star-like astrocytes (red) and oligodendrocytes (green) intertwine with neurons (blue) in culture.JONATHAN COHEN, NATIONAL INSTITUTES OF HEALTH; COURTESY: NATIONAL SCIENCE FOUNDATIONBy 1899, nearly 50 years after glia were discovered, Spanish neuroscientist Santiago Ramón y Cajal recognized that research on these cells was lagging behind studies on their flashier neuronal cousins. “What functional significance may we attribute to the neuroglia?” he wrote in his multivolume book Texture of the Nervous System of Man and the Vertebrates. “Unfortunately, in the present state of science it is not possible to answer this important question except through more or less rational conjectures. In the face of this problem, the physiologist is totally disarmed for lack of methods.”

Despite making up 50 to 80 percent of the cells of the human brain (estimates vary), glial cells were thought to simply provide structural integrity to the brain and to nourish and mop up after neurons. And it would be the better part of a century before Ramón y Cajal’s call for more methods to study glia was answered.

“Glia were not a major point of interest in neuroscience,” says Marc Freeman, an investigator with the Howard Hughes Medical Institute (HHMI) who studies fruit fly glia at the University of Massachusetts Medical School. “Neurons were the ones that fired signals. . . . Glial cells, when you plug them in, don’t do a whole lot.”

“People are saying neurons are overstudied, and glia are understudied.”—Ben ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies