Lab-Grown Model Brains

Three-dimensional tissues called “cerebral organoids” can model the earliest stages of brain development.

Written byEd Yong
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Cross-section of cerebral organoid; All cells in blue, neural stem cells in red, and neurons in greenMADELINE A. LANCASTERIn an Austrian laboratory, a team of scientists has grown three-dimensional models of embryonic human brains. These “cerebral organoids” are made from stem cells, which are simply bathed in the right cocktail of nutrients and grown in a spinning chamber. Over a few weeks, they arrange themselves into pea-sized balls of white tissue, which recapitulate some of the complex features of a growing brain, including distinct layers and regions.

“This demonstrates the enormous self-organizing power of human cells,” said Jürgen Knoblich from the Institute of Molecular Biotechnology of the Austrian Academy of Science, who led the study published in Nature today (August 28). “Even the most complex organ—the human brain—can start to form without any micro-manipulation.”

Knoblich cautioned that the organoids are not “brains-in-a-jar.” “We’re talking about the very first steps of embryonic brain development, like in the first nine weeks of pregnancy,” he said. “They’re nowhere near an adult human brain and they don’t form anything that resembles a neuronal network.”

These models will not help to unpick the brain’s connectivity or higher mental functions but they are excellent tools for studying both its early development and disorders that perturb those first steps. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies