Laser-Triggered Nanobubbles Blast a Path into Biofilms

Researchers could one day use the method to deliver antibiotics to topical wounds infected by hard-to-treat masses of bacteria.

Written byJonathan Wosen
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, DR_MICROBE

When Kevin Braeckmans and Tom Coenye first teamed up in 2009 to devise new ways to treat badly infected wounds, it seemed like a natural pairing. Braeckmans was a drug delivery expert with no microbiology experience, while Coenye was a microbiologist lacking drug delivery expertise. These two researchers, both at Ghent University in Belgium, aspired to outfox biofilms—cooperative clusters of bacteria that infect 90 percent of chronic wounds and stymie many antibiotics due to their sticky, tightly packed nature.

The standard therapy for biofilm-afflicted wounds is to scrape away infected tissue before the infection becomes lethal. But after four years of working on an alternative to this painful and sometimes ineffective approach, Braeckmans and Coenye were stuck. They had learned how the electrical charges and molecular sizes of antibiotic compounds affected the drugs’ movements through biofilms. And with that information, they had managed to get antibiotics ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

April 2020

Exercise for Cancer

Molecular clues link physical activity to improved patient outcomes

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies