Lipids Take the Lead in Metastasis

Researchers find diverse ways that the molecules can regulate cancer’s spread.

Written byAmanda B. Keener
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Positron emission tomography scans like this one show the locations of metastatic tumors. WIKIMEDIA, AKRIA KOUCHIYAMAAlthough metastasis is the leading cause of death among people with cancer, researchers are stumped about which molecular signals trigger the exit of malignant cells from primary tumors to start new ones in other parts of the body. Two studies published in Nature this month highlight roles in metastasis for an unexpected group of molecules—lipids.

“For many years, we were studying peptides and proteins,” said Mariusz Ratajczak, a cell biologist at the University of Louisville who was not involved in the studies. “Now we are coming to bioactive lipids.”

In the first study, published January 5, researchers at the Institute for Research in Biomedicine (IRB) in Barcelona reported that, in mice, human oral cancer cells that are most likely to migrate from primary tumors are marked by the surface protein, CD36—a scavenger receptor that binds fatty acids. The researchers initially identified the cells by examining genes upregulated in nondividing tumor cells, finding increased expression of genes involved in lipid metabolism, transport, and storage—all processes downstream of CD36.

When the researchers knocked down CD36 with short hairpin RNA before the injecting ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

April 2017

Targeting Tumors

Precision aim to spare healthy cells

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform