Macrophages Are the Ultimate Multitaskers

From guiding branching neurons in the developing brain to maintaining a healthy heartbeat, there seems to be no job that the immune cells can’t tackle.

Written byClaire Asher
| 16 min read

Register for free to listen to this article
Listen with Speechify
0:00
16:00
Share

MASSIVE CELL: Colored transmission electron micrograph of a macrophage cell, one of the largest cells in the body© MEDIMAGE/SCIENCE SOURCE

In the mid-1990s, while researching mice’s immune responses to nematode worms, immunoparasitologist Judi Allen of the University of Manchester spotted macrophages accumulating at the site of a multicellular parasite infection.1 This was unexpected, she told The Scientist; at the time, the immune cells were only known for their antimicrobial activity—a different type of immune response from that known to fight large parasitic worms. The mystery continued, as RNA sequencing revealed that the immune cells’ gene expression differed greatly from that of macrophages activated by a microbial infection.2 “It was so shockingly different that we were thrown,” says Allen. “It didn’t tell us at all what these macrophages were doing, because the list of genes that they were [expressing] were completely unknown.”

Only years later, when ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH