Male Mosquitoes Trigger Egg Production

Malaria-transmitting female Anopheles gambiae develop eggs upon mating as a result of a steroid hormone injected into them by males.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Anopheles gambiae mosquitoWIKIMEDIA, JAMES D. GATHANYFor a female Anopheles gambiae mosquito to develop and lay eggs, she must do two things: eat a blood meal, and mate. The latter, it turns out, can trigger egg development thanks to a steroid hormone passed from male to female in the gelatinous mating plug that he transfers at the end of copulation.

In a paper published today (October 29) in PLOS Biology, researchers from the Harvard School of Public Health and the University of Perugia in Italy detail the molecular pathway by which this hormone interacts with the female reproductive tract, identifying a receptor and an egg-development-triggering protein that mediate the male’s manipulation of the female’s physiology.

“[T]he paper provides insights into the complex biological cocktail that the male [mosquito] synthesizes to control the reproduction of the female he mates with,” mosquito physiologist Marc Klowden, a professor emeritus at the University of Idaho who was not involved in the research, told The Scientist in an e-mail. “It revolutionizes our understanding of the role of the mating plug and the components of the seminal fluid, which used to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio 
Zymo Research

Zymo Research Launches Microbiome Grant to Support Innovation in Microbial Sciences